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1 Introduction

In the module on Deterministic Finite Automata (DFA) you learned that a DFA is a finite
state machine that accepts or rejects finite strings of symbols and produces the same unique
computation for each unique input string. This unique computation is what the term deter-
ministic means. In particular, for any state of a DFA, the state transition function specifies
exactly one state for each input symbol in the alphabet. We now introduce a generalization
of this concept. In this module, we will study Nondeterministic Finite Automata. In a non-
deterministic finite automation, for a given state and input symbol, none or several choices
may be available for the next state. Nondeterminism is a powerful concept in computation
which also has many practical applications. Let us motivate this concept with an example.

2 Pattern matching

A common everyday task that many of you do is to search for a pattern in some text.
Specifically, suppose we have a set of words and we want all the words that contain a string
w as a substring with or without a specified location. To simplify our discussion, suppose our
alphabet is {a, b, c} and we are interested in the set of all words that contain the string abc
or that end with the string ac. Thus a word w is in our set if the string abc occurs anywhere
in w or if w is a word of any length that ends with ac. Some examples of such words are
wy = aaabe, we = babcabcac, wy = aaac. On the other hand, the string wy = abbccaab is not
in the desired set.

Note that wy has the substring abc in multiple locations and also ends with ac. We try
to construct a finite machine that may accept such words. First, suppose we want the string
abc anywhere in the word. In terms of states and transitions, we want the configuration
shown below to be a part of our finite machine.
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Thus we can move from the state p to the state s with the string abc. Since this occurrence
of abc can be anywhere in the word, we want to be able to reach the state p at any step.
Also, once we reach s, we have found the substring abc and now we want to accept the word
with any combination of input symbols following this occurrence of abc. The concept of
nondeterminism comes into play here and one way we can accomplish this task is as follows.



We introduce an initial state q0 with transitions shown as below. The transitions labeled
a, b and c at g0 can read any combination of the symbols in the alphabet, while the transition
labeled A allows one to “jump” from ¢0 to p without reading an input symbol. Thus we may
“guess” where an abc might occur to make this jump.

An equivalent way to achieve this without the A\ transition is as shown below. Here the
state p is the initial state. We observe that there are two transitions labeled a from the state
p. One stays in p while the other goes to ¢. This nondeterministic behavior allows one to
make the jump to the state ¢ when looking for the substring abc.

Next, we introduce transitions a, b and c at state s and make s an accept state, as shown
below. Thus any word containing the string abc is accepted.
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Finally, to accept words that end with ac, we introduce two more states and transitions as
shown below. This is a Nondeterministic Finite Automaton (NFA) that accepts our desired
set.




We note several properties of this NFA.

e There are three transitions from state p labeled a. Another way of saying this is that
the transition labeled a from state p goes to the set {p, ¢, t}.

e There are no transitions labeled a or ¢ from the state q. Another way of saying this is
that the transitions labeled a and ¢ from state g go to the empty set ¢.

e There can be transitions labeled \, as discussed above.

Properties such as above distinguish an NFA from a DFA. Another consequence of nonde-
terminism is that there may be several possible paths for a given input string. For example,
for the input w = ababe, there are several configurations in the NFA above. For example,
let us look at the configuration below.

Since s is an accept state, the above configuration shows that the input w is accepted.
However, we also have,

This configuration ends in p which is not an accept state. We observe that an NFA
accepts an input if there is at least one accepting configuration. Now consider the following
configuration for the same input w = ababc.

Since there is no transition from ¢ labeled b, we interpret this is as a transition going to
the empty set ¢. This state is generally not shown in the state transition diagram. Any
transition from ¢ stays in ¢. Can you see any other configurations for the input w = ababc?

Before studying the formal definition of an NFA given below, you should practice by
testing the NFA discussed above with several inputs.

Question 1.
1. Load the NFA in the file NF-1.jflap.

2. Enter inputs wy, ws, ws and wy in the discussion above and verify that the first three
inputs are accepted and the last is rejected, as shown in the diagram below.

3. List all configurations for the inputs wy, ws, ws and w;.

4. Enter six more inputs of your own, three of which are accepted and the other three are
rejected.
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3 Nondeterministic Finita Automata (NFA)

We can now describe NFA formally. An NFA is a 5-tuple (Q,%, 6, q0, F), where
— @ is a finite set of states
— X is a finite set of input symbols (the alphabet)

—0:Q x (XU{A}) = P(Q) is the state transition function, where P(Q) is the power
set of (), the set of all subsets of ()

— q0 € (@ is the start state, and

— F C () is the set of accept states.

An input w is accepted by an NFA if there is at least configuration for w that ends
in an accept state, that is a state that belongs to F. As mentioned above, there
may be several configurations for an input. The state transition function can also be
represented as a table, as shown next for the NFA above. We have filled this table
partially and you are asked to complete the table in an exercise below.



Table 1: State Transition Table

a b c A
p {p,¢.t} {p} {p} ¢
q ) {r}
s {st  {s} {s}
t
u ) ¢ )

Question 2. Complete the table above by filling out all blank cells in the table.
Explain your answers.

Question 3.

Load the NFA in the file NFA-2.jflap, as shown below.

Verify that @ = {q0,p,q,r,s,t,u}.

Which state is the initial state?

What is F'?

Verify that d(p,a) = {q,t}.

What is §(q0, \)?

What is §(r, b)?

What is §(¢, \)?
(u, b)*
(
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What is 6(u,b)?
What is d(s,c)?
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Question 4. Do NFA-1.jflap and NFA-2.jflap accept the same set of words? Explain
your answer in detail.



4 Summary

We saw above that an NFA is a generalization of a DFA. In a DFA there is a unique
(exactly one) transition for every state and symbol pair. In an NFA, there can be zero
or more transitions for a given state and a symbol. Furthermore, transitions with \ are
also allowed. It follows that every DFA is also an NFA. Later, you'll see other types of
finite machines that have nondeterministic generalizations, which are in general more
powerful, i.e. they accept more sets of words than their deterministic counterparts.
However, it turns out that for every NFA there is an equivalent DFA, one that accepts
the same set of words as the NFA. In the next module, you will learn an algorithm for
converting a given NFA into an equivalent DFA and you will use JFLAP to run this
algorithm.
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